Welcome to Kaczmarz Algorithms’s documentation!¶
Reference¶
kaczmarz.Base (A, b[, x0, tol, maxiter, callback]) |
A base class for the Kaczmarz algorithm. |
kaczmarz.Cyclic (*base_args, **base_kwargs) |
Cycle through the equations of the system in order, repeatedly. |
kaczmarz.MaxDistance (A, b[, x0, tol, …]) |
Choose equations which leads to the most progress. |
-
class
kaczmarz.
Base
(A, b, x0=None, tol=1e-05, maxiter=None, callback=None)[source]¶ A base class for the Kaczmarz algorithm.
This class cannot be instantiated directly. Subclasses should implement
kaczmarz.Base._select_row_index()
. Subclasses will typically be constructed usingkaczmarz.Base.iterates()
orkaczmarz.Base.solve()
.Parameters: - A ((m, n) spmatrix or array_like) – The m-by-n matrix of the linear system.
- b ((m,) or (m, 1) array_like) – Right hand side of the linear system.
- x0 ((n,) or (n, 1) array_like, optional) – Starting guess for the solution.
- tol (float, optional) – Tolerance for convergence,
norm(normalized_residual) <= tol
. - maxiter (int or float, optional) – Maximum number of iterations.
- callback (function, optional) – User-supplied function to call after each iteration.
It is called as
callback(xk)
, where xk is the current solution vector.
Notes
There may be additional parameters not listed above depending on the selection strategy subclass.
-
_select_row_index
(xk)[source]¶ Select a row to use for the next Kaczmarz update.
Parameters: xk ((n,) array) – The current Kaczmarz iterate. Returns: ik – The index of the next row to use. Return type: int
-
ik
¶ The index of the row used on the most recent iteration.
Takes the value -1 if a projection was not performed at iteration
k
.Type: int
-
xk
¶ The most recent iterate.
The shape will match that of
x0
if provided, orb
otherwise.Type: (n,) or (n, 1) array
-
classmethod
iterates
(*base_args, **base_kwargs)[source]¶ Get the Kaczmarz iterates.
Note
This method takes the same parameters as
kaczmarz.Base
or the subclass from which it is called. For example,kaczmarz.Cyclic.iterates()
takes the same arguments askaczmarz.Cyclic
.Parameters: - base_args (tuple) – Positional arguments for
kaczmarz.Base
constructor or the subclass in use. - base_kwargs (dict) – Keyword arguments for
kaczmarz.Base
constructor or the subclass in use.
Returns: iterates – An iterable of the Kaczmarz iterates. The shapes will match that of
x0
if provided, orb
otherwise.Return type: iterable((n,) or (n, 1) array)
- base_args (tuple) – Positional arguments for
-
classmethod
solve
(*base_args, **base_kwargs)[source]¶ Solve a linear system of equations using the Kaczmarz algorithm.
Note
This method takes the same parameters as
kaczmarz.Base
or the subclass from which it is called. For example,kaczmarz.Cyclic.solve()
takes the same arguments askaczmarz.Cyclic
.Parameters: - base_args (tuple) – Positional arguments for
kaczmarz.Base
constructor or the subclass in use. - base_kwargs (dict) – Keyword arguments for
kaczmarz.Base
constructor or the subclass in use.
Returns: x – The solution to the system
A @ x = b
. The shape will match that ofx0
if provided, orb
otherwise.Return type: (n,) or (n, 1) array
- base_args (tuple) – Positional arguments for
-
class
kaczmarz.
Cyclic
(*base_args, **base_kwargs)[source]¶ Bases:
kaczmarz._abc.Base
Cycle through the equations of the system in order, repeatedly.
References
- S. Kaczmarz. “Angenäherte Auflösung von Systemen linearer Gleichungen.” Bulletin International de l’Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques, 35, 335–357, 1937
-
class
kaczmarz.
MaxDistance
(A, b, x0=None, tol=1e-05, maxiter=None, callback=None)[source]¶ Bases:
kaczmarz._abc.Base
Choose equations which leads to the most progress.
This selection strategy is also known as Motzkin’s method.
References
- T. S. Motzkin and I. J. Schoenberg. “The relaxation method for linear inequalities.” Canadian Journal of Mathematics, 6:393–404, 1954.
Kaczmarz Algorithms¶
Variants of the Kaczmarz algorithm for solving linear systems in Python.
Installation¶
To install Kaczmarz Algorithms, run this command in your terminal:
$ pip install -U kaczmarz-algorithms
This is the preferred method to install Kaczmarz Algorithms, as it will always install the most recent stable release.
If you don’t have pip installed, these installation instructions can guide you through the process.
Usage¶
First, import the kaczmarz
package.
>>> import kaczmarz
Solving a system of equations¶
To solve the system of equations 3 * x0 + x1 = 9
and x0 + 2 * x1 = 8
using the Kaczmarz algorithm with the cyclic selection rule, use the kaczmarz.Cyclic.solve()
function.
>>> A = [[3, 1],
... [1, 2]]
>>> b = [9, 8]
>>> x = kaczmarz.Cyclic.solve(A, b)
>>> x
array([2., 3.])
Inspecting the Kaczmarz iterates¶
To access the iterates of the Kaczmarz algorithm with the cyclic selection rule, use the kaczmarz.Cyclic.iterates()
function.
>>> A = [[1, 0, 0],
... [0, 1, 0],
... [0, 0, 1]]
>>> b = [1, 1, 1]
>>> x0 = [0, 0, 0] # Initial iterate
>>> for xk in kaczmarz.Cyclic.iterates(A, b, x0):
... xk
array([0., 0., 0.])
array([1., 0., 0.])
array([1., 1., 0.])
array([1., 1., 1.])
Inspecting the rows/equations used¶
To access the row index used at each iteration of the Kaczmarz algorithm, use the ik
attribute of the iterates. For example,
>>> iterates = kaczmarz.Cyclic.iterates(A, b, x0)
>>> for xk in iterates:
... print("Row used:", iterates.ik)
Row used: -1
Row used: 0
Row used: 1
Row used: 2
The initial value of iterates.ik
is -1
, since no projections have been performed yet at the start of the algorithm.
Optional arguments¶
The solve()
and iterates()
functions take optional arguments of maxiter
and tol
to specify a limit on the number of iterations
and the desired accuracy of the solution respectively.
Creating your own selection strategy¶
To implement a selection strategy of your own, inherit from kaczmarz.Base
and implement the _select_row_index()
method.
For example, to implement a strategy which uses of the equations of your system in reverse cyclic order:
>>> class ReverseCyclic(kaczmarz.Base):
... def __init__(self, A, *args, **kwargs):
... super().__init__(A, *args, **kwargs)
... self.n_rows = len(A)
... self.row_index = None
...
... def _select_row_index(self, xk):
... if self.row_index is None:
... self.row_index = self.n_rows
... self.row_index = (self.row_index - 1) % self.n_rows
... return self.row_index
Your new class will inherit solve()
and iterates()
class methods which work the same way as kaczmarz.Cyclic.solve()
and kaczmarz.Cyclic.iterates()
described above.
>>> iterates = ReverseCyclic.iterates(A, b, x0)
>>> for xk in iterates:
... print("Row used:", iterates.ik)
... print("Iterate:", xk)
Row used: -1
Iterate: [0. 0. 0.]
Row used: 2
Iterate: [0. 0. 1.]
Row used: 1
Iterate: [0. 1. 1.]
Row used: 0
Iterate: [1. 1. 1.]
For information about the optional arguments of solve()
and iterates()
, as well as the other selection strategies available other than Cyclic
, see readthedocs.io.
Citing¶
If you use our code in an academic setting, please consider citing our code. You can find the appropriate DOI for whichever version you are using on zenodo.org.
Development¶
See CONTRIBUTING.md for information related to developing the code.